ENHANCEMENT IN THE STORAGE OF METHANE IN HYDRATES

Charles E. Taylor
U.S. Department of Energy
National Energy
Technology Laboratory
P.O. Box 10940
Pittsburgh, PA 15236-0940
412-386-6058
charles.taylor@netl.doe.gov

Advanced Fuels Systems Focus Area
National Energy Technology Laboratory

Dirk D. Link, Edward P. Ladner, and Heather A. Elsen

Outline

Methane Hydrates Overview

- Supply, location, etc.
- Energy storage applications

Problem/Difficulty to be Addressed

 Natural hydrate systems do not approach theoretical maximum uptake of methane

Enhancing Storage

- Identify optimum formation parameters
- Examine effectiveness of surfactant addition to form hydrates

Results Summary

- Experimental parameters
- Optimum surfactant thus far

Future work

USGS Estimates of U.S. In-place Methane Contained within Gas Hydrates (Tcf)

Methane Storage as Methane Hydrate

Advantages

- Relatively simple engineering set-up
- Storage under mild conditions (compared to LNG)
- Safe, slow release of methane under conditions of failure

Applications

- Storage at remote locations
- Transportation of stranded gas to markets
- Trans-oceanic transport to remote locations (gas and water)
- Competitive technology for small-scale stranded gas sources

Issues

- Maximizing amount of methane in hydrate

Storage of Methane in Hydrates Background

- Previous research focused on the conversion of methane to methanol
- Preliminary experiments revealed high conversion of methane is possible
 - Solubility of methane was limiting
- During the course of conversion studies, methane hydrate formation explored to maximize methane conversion
 - Reaction conditions
 - Physical mixing
 - Additives

Preliminary Studies on Hydrate Formation

- Typical time versus temperature and pressure profiles
 - -Binary (methane-pure water) system
 - -Simulated seawater
- Evaluation of stirring
- Pressure conditions
- Hysteresis Effect

Experimental Details

- High-pressure cell filled with volume of chosen reactant
 - Pure water
 - Simulated seawater (3.2% net NaCl and MgCl₂)
- Headspace filled with 99.999% methane
 - -Static pressure at ~1400 psig initial
 - -Constant pressure continuously delivered at ~1400 psig
- Temperature lowered to form hydrate
 - -Steep pressure decrease signals hydrate formation
 - View cell & CCD camera used to visually observe formation
- Headspace gas vented at lower temperature
- Cell warmed to dissociate hydrate and evaluate uptake of methane

High-pressure View Cell Schematic

High-pressure View Cell Exploded View

Pressure-temperature Profile Of Hydrate Formation

Effect of Stirring on Hydrate Formation

Hysteresis Effect During Hydrate Formations

Hysteresis Effect During Hydrate Formations

Hydrate Formation With Surfactant Added Under Static Headspace Pressure

Hydrate Formation Comparison Under Static Headspace

Hydrate Formation Comparison Under Constant Methane Pressure

Methane Storage in Sodium Dodecylsulfate System

Constant Head Pressure	Vent Temperature (°C)	Volume Liquid	% CH₄ Uptake
No	-4.5	10	90.75
Yes	-5.5	15	97.26

- Experimental details for optimization of methane uptake during hydrate formation
 - Continuous stirring
 - Constant methane headspace pressure

Additional Surfactants Tested for Storage

Surfactant	Vent Temperature (°C)	Volume Liquid	% CH₄ Uptake
Sodium Dodecylsulfate	-5.5	15	97.26
Dodecylamine	-10.8	10	9.91
Dodecyl Trimethyl Ammonium Chloride	-15.5	10	13.92
Sodium Lauric Acid	-15.2	10	39.54
Sodium Lauric Acid	-16.1	10	77.35
Sodium Oleate	-13.7	10	70.47
Superfloc 16	-14.0	10	19.59
Superfloc 84	-15.1	10	20.05

Commercial Surfactant Test

Cycle Number	Vent Temperature (°C)	Volume Liquid	% CH₄ Uptake
First	-17.9	10	14.51
Second	-15.1	10	99.10
Third	-19.9	10	16.47
Fourth	-17.3	10	14.76
Fifth	-19.9	10	21.47
Sixth	-19.4	10	54.35

Kinetics of Hydrate Formation/Dissociation

- Dr. Faruk Civan and Dr. Richard G. Hughes Mewbourne School of Petroleum and Geological Engineering, University of Oklahoma
- Kinetic modeling of hydrate formation & dissociation using NETL data

Future Plans and Recent Experimental Work

- Continuation of surfactant screening study
 - Examine effects of different types on uptake
 - Anionic and cationic
 Nonionic
 Amphoteric
- Form methane hydrates on larger scale
 - Explore formation/dissociation characteristics on 30x
 larger scale (up to 12.2 L cell volume)
 - Expand formation to include "natural" conditions
 - Scale-up of methane hydrate storage
 - -Use ultrasonic technique to monitor hydrate formation
- Use Raman Spectroscopy to evaluate formation of methane hydrates
 - Initial tests with binary (water-CH₄) system
 - Progress to surfactant systems
 - Real time monitoring of formation?

New Hydrate Facility

• 12.2 L Hydrate View Cell, Environmental Chamber, and Assorted Hardware

Ultrasonic Probes Measuring Hydrate Formation

Raman Spectrometer to Study Hydrates

In Situ Raman Spectra of Methane Hydrate Sample

In Situ Raman Spectra of Methane Hydrate Sample

Conclusions

- Maximized storage of methane in methane hydrate in binary system occurred under conditions of:
 - -Continuous stirring
 - Constant methane headspace pressure
- Addition of surfactant approached 99% of theoretical uptake
 - Sodium dodecylsulfate (SDS) and commercial surfactant showed highest uptake – 97% and 99%, respectively
 - Other surfactants ranged from 15% to 80% uptake
- Raman studies recently demonstrated that:
 - Stirring is important to promote homogeneous formation
 - Packing structure can be identified
 - In-lab formations achieve hydration number of ~ 6

Acknowledgements

- Dr. Christopher Matranga, post-doctoral scientist
- Jonathan Lekse, summer student
- Oak Ridge Institute for Science Education (ORISE)

